HNSWLib
兼容性
仅适用于Node.js。
HNSWLib是一个内存向量存储器,可以保存到文件中。它使用HNSWLib。
设置
:::注意
在Windows上,你可能需要先安装Visual Studio才能正确构建hnswlib-node
包。
:::
您可以通过以下方式进行安装
- npm
- Yarn
- pnpm
npm install hnswlib-node
yarn add hnswlib-node
pnpm add hnswlib-node
用法
从文本创建新索引
import { HNSWLib } from "langchain/vectorstores/hnswlib";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
const vectorStore = await HNSWLib.fromTexts(
["Hello world", "Bye bye", "hello nice world"],
[{ id: 2 }, { id: 1 }, { id: 3 }],
new OpenAIEmbeddings()
);
const resultOne = await vectorStore.similaritySearch("hello world", 1);
console.log(resultOne);
从加载器创建新索引
import { HNSWLib } from "langchain/vectorstores/hnswlib";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { TextLoader } from "langchain/document_loaders/fs/text";
// Create docs with a loader
const loader = new TextLoader("src/document_loaders/example_data/example.txt");
const docs = await loader.load();
// Load the docs into the vector store
const vectorStore = await HNSWLib.fromDocuments(docs, new OpenAIEmbeddings());
// Search for the most similar document
const result = await vectorStore.similaritySearch("hello world", 1);
console.log(result);
将索引保存到文件并重新加载
import { HNSWLib } from "langchain/vectorstores/hnswlib";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
// Create a vector store through any method, here from texts as an example
const vectorStore = await HNSWLib.fromTexts(
["Hello world", "Bye bye", "hello nice world"],
[{ id: 2 }, { id: 1 }, { id: 3 }],
new OpenAIEmbeddings()
);
// Save the vector store to a directory
const directory = "your/directory/here";
await vectorStore.save(directory);
// Load the vector store from the same directory
const loadedVectorStore = await HNSWLib.load(directory, new OpenAIEmbeddings());
// vectorStore and loadedVectorStore are identical
const result = await loadedVectorStore.similaritySearch("hello world", 1);
console.log(result);
过滤文档
import { HNSWLib } from "langchain/vectorstores/hnswlib";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
const vectorStore = await HNSWLib.fromTexts(
["Hello world", "Bye bye", "hello nice world"],
[{ id: 2 }, { id: 1 }, { id: 3 }],
new OpenAIEmbeddings()
);
const result = await vectorStore.similaritySearch(
"hello world",
10,
(document) => document.metadata.id === 3
);
// only "hello nice world" will be returned
console.log(result);